The future of sustainable materials and their impact on product design

Authors

1 Assistant Professor, Department of Industrial Design, Faculty of Applied Arts, Beni Suef University

2 Assistant Lecturer, Department of Industrial Design, Faculty of Applied Arts, Damietta University

3 Assistant Professor, Department of Industrial Design, Faculty of Applied Arts, Damietta University

Abstract

With increasing environmental awareness, increasing numbers of industry commitments and concerted actions by product developers and designers, sustainable development is showing increasing momentum. A new generation of products embodying non-mainstream materials is expanding its market share, making the idea of ​​a circular economy more realistic.
Environmental problems have also stimulated the attention of consumers and producers to monitor negative environmental impacts and work to develop and discover new technologies to prevent or reduce environmental damage. Increasing the environmental awareness of designers and manufacturers is considered one of the most important foundations of this environmental strategy as a result of increasing environmental regulations as a result of buying and using behavior. Among consumers, which prompted producing companies to improve their environmental ethics in order to survive in global markets among competing products.
In particular, sustainable materials such as renewable and recycled materials are developed and used to secure resource circulation. Although the prospects for sustainable materials are continually hindered by the strong position of petrochemical-based materials and the closed nature of other materials in the market, the chances of a true sustainable materials economy are still being researched.
It can be said that the discussion of materials development has not occurred widely in the field of product design, in addition to the fact that the current development and application of sustainable materials is unclear, but by simply leaning towards following methods of purely design-based conceptual application with rethinking and exploration through modifying the properties of materials and experimenting with them, it has The results that designers discover in this way then contribute to the formation of a new range of materials.
The outputs of such explorations push the boundaries of the field of design and challenge the capabilities of current technology because they are already shaping the future of the field of materials, and they have reached their ultimate culmination by including the creation of future materials, and the making of iconic models that reflect the dynamism of materials explorations to the extent that future life is envisioned with interactive materials.
 
      Sustainable Materials, Sustainable Producers Design, Recycling, Sustainable Design

Keywords


المراجع والمصادر.
[1] Miodownik, M. a. (2007). Toward designing new sensoaesthetic materials. Pure and Applied Chemistry, 79(10), 1635-1641. https://doi.org/10.1351/pac200779101635.
[1] Ramirez, M. (2012). Ethics and social responsibility integration within industrial design education in Oceania. Design Research Society 2012, 04, 1565–1580.
[1] Júnior, W. K., Cândido, L. H. A., & Guanabara, A. S. (2008). Proposal of wet blue leather remainder and synthetic fabrics reuse. Journal of Cleaner Production, 16, 1711–1716. https://doi.org/10.1016/j.jclepro.2007.10.026
[1] Rognoli, V., Bianchini, M., Maffei, S., & Karana, E. (2015). DIY materials. Materials and Design, 86, 692-702. https://doi.org/10.1016/j.matdes.2015.07.020.
[1] Thilmany, J. (2014). The maker movement and the U.S. economy. Retrieved from https://www.highbeam.com/doc/1G1-393874522.html
[1] Parsons, T. (2009). Thinking: Objects: Contemporary approaches to product design (Vol.18).AVA Publishing SA.
[1]  Ginsberg, A. D. (2014). Design evolution. In A. Ginsberg, J. Calvert, P. Schyfter, A. Elfick, & D. Endy (Eds.), Synthetic aesthetics: investigating synthetic biology's design on nature. United States of America: The MIT Press.
[1] Karana, E., Barati, B., Rognoli, V., & Zeeuw Van Der Laan, A. (2015). Material driven design (MDD): a method to design for material experiences. International Journal of Design, 9(2), 35-54.
[1] Snell, K. D., & Peoples, O. P. (2009). PHA bioplastic: A value-added coproduct for biomass biorefineries. Biofuels, Bioproducts and Biorefining, (3), 456–467. https://doi.org/10.1002/bbb
[1] Huang, T. Y., Duan, K. J., Huang, S. Y., & Chen, C. W. (2006). Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. Journal of Industrial Microbiology and Biotechnology, 33(8), 701-706. https://doi.org/10.1007/s10295-006-0098-z.
[1] Pathak, S., Sneha, C., & Mathew, B. B. (2014). Bioplastics: its timeline based scenario & challenges. Journal of Polymer and Biopolymer Physics Chemistry, 2(4), 84–90. https://doi.org/10.12691/jpbpc-2-4-5.
[1] Vincent, B. B. (2011). Materials as Machines. In N. A. Carrier M. (Ed.), Science in the context of application. Boston Studies in the Philosophy of Science (Vol. 274, pp.101-111). Springer, Dordrecht.
[1] Júnior, W. K., Cândido, L. H. A., & Guanabara, A. S. (2008). Proposal of wet blue leather remainder and synthetic fabrics reuse. Journal of Cleaner Production, 16, 1711–1716. https://doi.org/10.1016/j.jclepro.2007.10.026
[1] Miqueleiz, L., Ramirez, F., Seco, A., Nidzam, R. M., Kinuthia, J. M., Tair, A. A., & Garcia, R. (2012). The use of stabilised Spanish clay soil for sustainable construction materials. Engineering Geology, 133–134, 9–15. https://doi.org/10.1016/j.enggeo.
[1] Kim, M. (2003). Evaluation of degradability of hydroxypropylated potato starch/ polyethylene blend films. Carbohydrate Polymers, 54(2), 173–181. https://doi.org/10.1016/S0144-8617(03)00169-3.
[1] Jones, M., Weiland, K., Kujundzic, M., Mautner, A., Bismarck, A., & John, S. (2019). Sustainable mycelium-derived chitinous thin films. In 22nd International Conference on Composite Materials (ICCM22). Melbourne, Australia.
[1] Kutz, M. (2002). Handbook of materials selection. New York: John Wiley and Sons, Inc.
[1] Mankins, J. C. (2007). Technology readiness levels: A white paper. Ansa, (October), 1–5.
[1] Esat, R., & Ahmed Kristensen, S. (2018). Classification of bio-design applications: towards a design methodology. In DS 92: Proceedings of the DESIGN 2018 15th International.
[1] Carlos Alberto Montana-Hoyos, Carlos Fiorentino, Biological Approaches Design for sustainability, The International journal of Designed objects,2016.
[1]  زايد، أحمد محمد, & إبراهيم الحديدي. (2024). الاستفادة من الذكاء الاصطناعي في تصميم وتطوير المنتجات لدعم الشركات الناشئة وريادة الاعمال، مجلة الفنون والعلوم التطبيقية، كلية الفنون التطبيقية،جامعة دمياط،المجلد الحادى عشر-العدد الأول- يناير 2024 م-109-138.
[1] https://knowledge.autodesk.com/support/inventor-products/learn explore/caas/simplecontent/content/improving-product-lifetime.html
[1] Chong-Wen Chen, Guidance on the Conceptual Design of Sustainable Product-Service Systems, Department of Communication, Yuan Ze Information University, 2018.
 
* المادة الخارقة"meta-material" : مادة تم تصميمها لتكون لها خاصية نادرًا ما يتم ملاحظتها في المواد التي تحدث بشكل طبيعي. وهي مصنوعة من مجموعات من عناصر متعددة مصنوعة من مواد مركبة مثل المعادن والبلاستيك، فعادة ما يتم ترتيب هذه المواد في أنماط متكررة، بمقاييس أصغر من الأطوال الموجية للظواهر التي تؤثر عليها، كما تستمد المواد الخارقة خصائصها ليس من خصائص المواد الأساسية، ولكن من خلال هياكلها المصممة حديثًا، وهذا وشكلها الدقيق وهندستها وحجمها واتجاهها وترتيبها يمنحها خصائصها الذكية القادرة على التعامل مع الموجات الكهرومغناطيسية عن طريق حجب الموجات أو امتصاصها أو تعزيزها أو ثنيها، لتحقيق فوائد تتجاوز ما هو ممكن مع المواد التقليدية، https://en.wikipedia.org/wiki/Metamaterial، (22/5/2023).
[1]  الحديدى هيثم- الصعيدى،إسلام: تأثير التكنولوجيا التفاعلية القابلة للارتداء على خبرة المستخدم،مجلة العلوم والفنون التطبيقية،كلية الفنون التطبيقية،جامعة دمياط،المجلد الحادى عشر-العددالثالث- أكتوبر2024م